
1.  Introduction
In California there is often too much or too little water. This was exemplified recently by the need for 
water-use restrictions during the severe drought from 2012 to 2016, followed immediately by a water sur-
plus in water-year 2016–2017 that nearly caused northern California’s Oroville Dam to overflow (Wang 
et al., 2017). Despite over a century of record keeping and management strategies that address this var-
iability, the volatility of precipitation in California continues to pose major challenges to water resource 
managers. Management must minimize effects of drought on water supplies while also keeping reservoir 
levels low enough to minimize flood risk (Dettinger et al., 2011; Hanak et al., 2017; Stewart et al., 2020). 
California’s exposure to hydrological volatility is particularly high because of its geographic setting: the 
majority of the state’s surface water supply falls in the Sierra Nevada during the relatively short cool season 
of November–March (Dettinger, 2013; Dettinger et al., 2011, 2018), giving this region and season particular 
importance to California’s water resources. While parts of the state, especially southern California, have 
worked to diversify water portfolios with a combination of surface, imported, and ground water, and to 
employ conservation measures and water markets (Gottlieb & FitzSimmons, 1991; Lund et al., 2018), Cali-
fornia remains vulnerable to extreme variability of precipitation (Swain et al., 2018). Extreme hydrological 
shortages in the Sierra Nevada can be only moderately buffered by water supplies in regions and seasons not 
experiencing drought. California’s drought and flood risk is amplified by the limited reliability of seasonal 
forecasts of Sierra Nevada precipitation (Jones et al., 2015). While forecast skill beyond a 2-week horizon is 
inherently poor globally, seasonal forecasting for parts of the western United States is aided by a teleconnec-
tion to the El Niño-Southern Oscillation (ENSO) (Huang et al., 2019; Seager & Hoerling, 2014). This is not 
the case, however, for the Sierra Nevada, which span the neutral point of the ENSO dipole that often drives 
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to caution against extrapolating the observed 2.2- and 13–15-year cycles to guide future expectations. On 
the other hand, observations and the reconstruction suggest that interannual variability of Sierra Nevada 
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dynamical drivers of extended periods of cyclicity in this critical natural resource.
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opposing precipitation anomalies in the Pacific Northwest versus the Southwest and supports most of the 
regional forecast skill (Dettinger et al., 1998; Wise, 2010; Cook et al., 2018).

The absence of reliable seasonal climate forecasts highlights the potential importance of the past as a guide 
to possible future variations in hydroclimate. Over the past century, the interannual variability of cool-sea-
son precipitation in the western United States, including the Sierra Nevada, exhibited some cyclic properties 
that could potentially aid prediction. These include a relatively strong periodicity at approximately 2.2 years 
(Dettinger et al., 1998; Granger, 1977; Johnstone, 2011) and a quasi-decadal periodicity at approximately 
13–15 years (Ault & St. George, 2010; Dettinger et al., 1998; Florsheim & Dettinger, 2007; Johnstone, 2011). 
These quasi-cyclic features of precipitation appear unrelated to ENSO or the Pacific Decadal Oscillation 
(Ault & St. George, 2010). The observed tendency for cyclicity in western United States cool-season pre-
cipitation is intriguing because of the potential for statistical forecasting at seasonal to decadal scales. The 
13–15-year periodicity has received particular attention from California’s Department of Water Resources 
as a potential forecasting guide for decadal fluctuations in water supply (Meko et al., 2014, 2017; Wang 
et  al.,  2014). However, it is inadvisable to base forecasts on extrapolated observed cyclicity because the 
cyclicity may not be stable in time, particularly if the underlying dynamics are not well understood (Lands-
berg et al., 1963). Indeed, the dynamics driving the observed 2.2 and quasi-decadal precipitation cycles are 
unknown and both cycles appeared stronger in the second half of the 20th century than in the first half 
(Ault & St. George, 2010; Johnstone, 2011).

Tree-ring records present a unique opportunity to interrogate the stability of observed cyclicity in hydro-
climate from a multicentury perspective. The western United States is particularly well-suited for such a 
test due to the high density of tree-ring records that are strongly correlated with cool-season precipitation 
(Fritts, 1965; Meko et al., 1993; St. George & Ault, 2014; Stahle et al., 2013, 2020; Williams et al., 2010). 
Tree-ring records in the western United States have been used extensively to reconstruct soil moisture and 
agricultural drought severity (Stockton & Meko, 1975; Cook et al., 1999, 2004; Williams et al., 2020), pre-
cipitation (Graumlich, 1993; Griffin & Anchukaitis, 2014; Diaz & Wahl, 2015; Wahl et al., 2017), stream-
flow (Meko et al., 2001, 2007; Woodhouse et al., 2020), and mountain snowpack (Belmecheri et al., 2016; 
Lepley et al., 2020; Pederson et al., 2011). However, these records have not been used extensively to extend 
our perspective on cyclicity in western United States cool-season precipitation. A notable exception is St. 
George and Ault (2014), who used tree-ring chronologies to investigate the history of observed 10–20-year 
periodicity in winter precipitation in the central latitudes of the United States west coast, observing that 
the amplitude of these cycles was highly inconsistent over the past 350 years. Tree-ring records have also 
been applied to examine cycles in California streamflow: A tree-ring study of the Sacramento and San 
Joaquin Rivers concluded that cyclic variation, with an average periodicity of about 15 years, is evident in 
both observations and reconstructions over the past 100 years, but is not a long-term feature of the hydro-
climate of the basins (Meko et al., 2014). In addition, Wahl et al. (2020) used precipitation reconstructions 
to evaluate so-called flip-years in which a dry year is followed by a wet year or vice versa, which may be 
related to the observed 2.2-year periodicity of interest here, but cyclicity was not evaluated explicitly in 
that study.

The outsized importance of cool-season Sierra Nevada precipitation to California’s water resources, the 
high interannual precipitation volatility, the apparent cyclicity, the limited capacity for seasonal fore-
casting, and the high density of precipitation-sensitive tree-ring chronologies in this region collectively 
motivate an investigation specifically focusing on the multicentennial history of cyclicity of cool-season 
precipitation the Sierra Nevada. A longer-term understanding of precipitation cyclicity in this region may 
guide expectations of whether it can be leveraged for forecasting and enhance our understanding of the 
climate dynamics that control cool-season precipitation variability at biennial to decadal timescales. Here 
we assess the observed spectral properties of Sierra Nevada cool-season precipitation and place them in 
the regional context across the western United States. We then produce a new 600-year tree-ring recon-
struction of Sierra Nevada cool-season precipitation. We use this reconstruction to investigate the extent to 
which tree-ring reconstructions of hydroclimate faithfully capture the nuanced spectral properties of the 
observed 20th-century record and how Sierra Nevada cool-season precipitation cycles have varied over the 
past six centuries.
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2.  Methods
2.1.  Climate Data

The primary variable of interest is cool-season (November–March) precipitation, which we convert to the 
5-month Standardized Precipitation Index (SPI) (McKee et al., 1993). The cool-season 5-month SPI express-
es a time series of November–March precipitation totals in units of standard deviations (σ) from the mean 
after the time series has been transformed to have a normal distribution. The Sierra Nevada regional SPI 
record is the area-weighted mean of all gridded SPI time series in the Sierra Nevada region, which we then 
restandardize to have a mean of 0 and a standard deviation of 1 during 1921–2016 (the common period 
among the precipitation products considered). The boundary of the Sierra Nevada region, shown in Fig-
ure 1, is defined by the Environmental Protection Agency’s level-3 ecoregions for California.

The primary observed precipitation dataset used in the United States is the National Oceanic and Atmos-
pheric Administration (NOAA) 1/24° monthly Climgrid product, covering 1895–2020 (Vose et al., 2014). 
Alternate datasets used for comparison are the 1/24° PRISM dataset from Oregon State for 1895–2020 
(Daly et al., 2008), the 1/2° version TS 4.04 Climate Research Unit (CRU) dataset for 1901–2019 (Harris 
et al., 2014), the 1/4° Global Precipitation Climatology Center (GPCC) v2018 dataset for 1901–2016 (Sch-
neider et  al.,  2014), and a 1° dataset covering 1915–2020 that we calculate from raw daily precipitation 
totals at weather stations from the Global Historical Climate Network (GHCN). For that dataset, we use 
quantile mapping to gap-fill missing daily totals using records from nearby stations. We ultimately calcu-
late cool-season SPI from 1352 gap-filled station records within the domain 28–53°N, 100–127°W. Each 1° 
gridded SPI record in our GHCN product is the restandardized mean of all station records within 0.75° of 
the grid’s center.

For our reconstruction of gridded cool-season SPI and other analyses that extend beyond the United States, 
we compile a multiproduct dataset that uses NOAA Climgrid data in the United States and CRU in Canada 
and Mexico. Because the CRU dataset ends in 2019, we extend through 2020 using the 1/10° monthly ERA5-
Land reanalysis from the European Center for Medium-Range Weather Forecasts, which covers 1981–2020 
(Hersbach et al., 2020). We combine these datasets into a single 1/4° monthly precipitation dataset for 1901–
2020 following Williams et al. (2020). For an analysis of the spectral properties of other elements of the 
water balance besides precipitation, we use 1/4° monthly reference evapotranspiration and 0–200 cm soil 
moisture plus snow water equivalent, updated from Williams et al. (2020). For our evaluation of how west-
ern North American precipitation relates to global climate, we use the 2° monthly mean NOAA Extended 
Sea Surface Temperature (SST) version 5 dataset for 1854–2020 and 2.5° monthly mean 500 hPa geopoten-
tial heights and zonally averaged equatorial wind velocity at 30 hPa from the reanalysis produced by the 
National Centers for Environmental Protection (NCEP) and Atmospheric Research (NCAR) for 1948–2020.
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Figure 1.  Sierra Nevada cool-season precipitation from five data sets. (a) November–March (Nov-Mar) Standardized 
Precipitation Index (SPI). Map inset: Sierra Nevada region in orange. (b) Spectra of the five time series in (a). Circles in 
(b) indicate significant (90%) difference from white noise.
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2.2.  Cool-Season Precipitation Reconstruction

We produce a gridded reconstruction of cool-season SPI on a 1/2° grid within the region of 28–52°N, 105–
128°W that covers years 1400–2000 of the Common Era. We then produce a Sierra Nevada reconstruction 
as the area-weighted average of gridded reconstructions within the Sierra Nevada region. A start year of 
1400 is chosen because the availability of precipitation-sensitive tree-ring chronologies in the vicinity of the 
Sierra Nevada declines dramatically prior to that year. The observational dataset used as the reconstruction 
target was the 1/4° multiproduct 1901–2020 SPI dataset described above (based on NOAA Climgrid in the 
United States and CRU TS 4.04 beyond), but aggregated to 1/2° to reduce biases associated with reconstruct-
ing a high-resolution target field with more sparsely distributed tree-ring records.

For the gridded reconstruction, we consider a large network of 1364 standardized chronologies of western 
North American tree-Ring-Width Index (RWI) values with continuous coverage over at least 1800–2000. A 
RWI chronology is a standardized record of annual tree-ring widths that represents the average of gener-
ally at least 10, and often many more, trees at a site. The number of trees represented by a RWI chronology 
generally reduces further back in time as old trees are rarer than young trees. We deleted years from the 
beginning of a chronology if they were represented by less than three tree-ring specimens (which may have 
come from less than three trees). Growth trends unrelated to climate (e.g., negative trend in ring widths as 
trunk area increases) were removed using conservative detrending methods designed to preserve multicen-
tennial growth variability likely due to climate (Melvin & Briffa, 2008). When applied to long ring-width 
time series of multiple centuries as was the case here, this method preserves high- to medium-frequency 
variance up to centennial or beyond, which is particularly important for our investigation of cyclicity on 
interannual to multidecadal scales. Section S7 of the Materials and Methods Supplemental text in Williams 
et al. (2020) provides additional information on this standardization approach. The RWI chronologies were 
calculated from raw measurements of tree-ring widths and these datasets were mostly obtained from the 
International Tree-Ring Databank (ITRDB). The network of RWI chronologies considered as potential pre-
dictors here is essentially the same as considered by Williams et al. (2020), which is an update and extension 
of the network used for prior gridded drought reconstructions (Cook et al., 2010b; Stahle et al., 2016, 2020). 
While many of the RWI records used in our study are known to be strong proxies for growing-season soil 
moisture, interannual variability in warm-season soil moisture across much of the study region, and the 
Sierra Nevada in particular, is dominated by cool-season precipitation (St. George & Ault, 2014; St. George 
et al., 2010). Many RWI records from the western United States are therefore ideal proxies for cool-season 
precipitation (Stahle et al., 2020). The network of RWI records also contains some chronologies collected 
specifically for their positive response to temperature. The ITRDB does not provide metadata on the intent 
of each collection, but our reconstruction method should only make use of these chronologies to the extent 
to which they reflect cool-season precipitation. RWI variability entrained into the reconstruction that is not 
associated with cool-season precipitation should contribute to reconstruction uncertainty.

Our reconstruction methods build from the point-by-point method developed for previous gridded hydro-
climate reconstructions (Cook et al., 1999, 2004, 2010a, 2010b, 2015; Palmer et al., 2015; Stahle et al., 2016, 
2020; Williams et al., 2020). For each grid cell, RWI chronologies are identified as candidate reconstruction 
predictors if they are located within a given search radius from the grid cell’s center and correlate with the 
target time series during the calibration period (1902–2000) with at least 90% confidence based on a vari-
ety of correlation tests. To reduce redundancy among the predictor time series for a given reconstruction, 
a Principal Component Analysis (PCA) is performed on the RWI chronologies based on their covariance 
during 1800–2000. Principal Component Time Series (PCs) are then calculated as the sum of the RWI time 
series weighted by the PCA loading coefficients, covering the full period of overlap among all RWI time 
series. Only PCs with eigenvalues greater than the mean are retained as potential reconstruction predictors. 
The potential for these PCs as reconstruction predictors is assessed as the Pearson’s correlation between 
each PC and the target SPI time series during 1902–2000 (r(PC,SPI)). A reconstruction model is developed 
in stepwise fashion by first using the PC with the highest absolute r(PC,SPI) as the primary predictor and 
then adding one PC at a time to a multiple regression in descending order of r(PC,SPI) for as long as the 
additional PC improves the model. Model improvement is assessed based on the Akaike Information Crite-
rion with a bias correction for small sample size (AICc), a commonly used measure of model quality that in-
cludes a penalty for additional predictor variables (Akaike, 1974; Hurvich & Tsai, 1989), and the additional 
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PC must reduce the AICc by at least two for inclusion in the model and to continue the model-building 
process (Jones, 1985).

Often the length of the PCs, and therefore the reconstruction, does not extend back to 1400 because most 
RWI chronologies begin after that year. In that case, an additional reconstruction nest is developed by re-
peating the procedure above after discarding the RWI with the latest initial year. Additional years of recon-
struction values from this secondary nest are appended to the beginning of the primary reconstruction. This 
is repeated until the primary reconstruction extends back to 1400.

Because RWI chronologies tend to have more temporal persistence than climate (Anderegg et al.,  2015; 
Meko, 1981; Meko & Graybill, 1995), all RWI chronologies and observed cool-season SPI time series are 
prewhitened prior to the reconstruction procedure by removing autocorrelation using a low-order autore-
gressive model (Box et al., 2015), as is typical in tree-ring reconstruction of climate (Cook et al., 1999). After 
reconstruction of the prewhitened target time series, the autoregressive properties of the observed time 
series are added back to the reconstruction.

Reconstruction skill is assessed using an 11-fold leave-9-years-out cross validation. For each grid cell, the 
reconstruction procedure is repeated 11 times, each time withholding 9 consecutive years from the model 
calibration. Each of the 11 resultant reconstruction models is used to make out-of-sample reconstruction esti-
mates for the 9 withheld years. Once out-of-sample estimates are made for the original 99-year calibration pe-
riod (1902–2000), these estimates are appended and reconstruction skill is assessed as the coefficient of deter-
mination (R2) between the out-of-sample time series and the target time series for 1902–2000 (referred to as the 
cross-validated R2, or VR2). We also assess the calibration R2 (CR2), which is the 1902–2000 R2 between the final 
reconstruction (calibrated over the full calibration period) and the target SPI time series. For each grid cell, 
the VR2 and CR2 are calculated for each reconstruction nest to assess how reconstruction skill changes with 
declining availability of RWI chronologies. Reconstruction uncertainty intervals are produced using 10,000 
Monte Carlo simulations of random time series of reconstruction errors that have the same mean, standard 
deviation, and autoregressive properties as the errors from the out-of-sample reconstruction estimates.

Our initial reconstruction considered RWI chronologies within a relatively small 75-km search radius from 
the center of each grid cell as potential predictors. However, the availability of RWI chronologies varies 
spatially and some areas do not have enough long, precipitation-sensitive RWI chronologies to allow for 
this relatively small 75-km search radius. In other areas with many nearby precipitation-sensitive chronolo-
gies, an even smaller search radius may be appropriate. Further, if RWI chronologies are widely distributed 
across a large search radius, it may be inappropriate for the target dataset to have a high 1/2° spatial reso-
lution (Williams et al., 2020). For example, a 75-km search radius approximately overlaps a 1.5 × 1.5° box. 
We follow the Williams et al. (2020) ensemble-reconstruction approach in which an ensemble of alternate 
reconstructions are made considering varying search radii and spatial smoothings of the target dataset. We 
consider 18 alternative reconstructions with search radii ranging from 25 to 250 km and spatial smoothings 
ranging from no smoothing (original 1/2° resolution) to a 5 × 5-cell smoothing (2.5° resolution). For the 
no smoothing case, 3 × 3-cell smoothing case, and 5 × 5-cell smoothing case, the search radii vary from 25 
to 175 km, 75 to 250 km, and 125 to 250 km, respectively. After producing the initial reconstruction with a 
75-km search radius and 3 × 3-cell smoothing, each grid cell is offered the 18 alternative reconstructions 
for potential replacement in a stepwise manner that begins with the smallest search radius and least spatial 
smoothing. For each grid cell, the alternative reconstruction becomes the new primary reconstruction if the 
alternative reconstruction is ≥10 years longer than the primary reconstruction without reducing the VR2 or 
increasing the cross-validated AICc or reduces the cross-validated AICc by at least two without reducing the 
VR2 or reconstruction length. Notably, the maximum 250-km search radius considered here is smaller than 
the ≥450-km radius typically considered in gridded drought reconstructions (e.g., Cook et al., 1999; Stahle 
et al., 2020) in order to better capture fine-scale spatial variability in precipitation anomalies and minimize 
the influence of anomalies from surrounding areas on the Sierra Nevada precipitation reconstruction. This 
is important because regions to both the south and north have stronger ENSO teleconnections than are 
observed for the Sierra Nevada itself. After calculation of the area-weighted average reconstruction for the 
Sierra Nevada, we follow the bias correction method of Williams et al. (2020) to ensure that, for each unique 
set of RWI chronologies used in the reconstruction, the reconstructed time series has the same mean and 
variance as the observed regionally averaged SPI record during 1902–2000.

WILLIAMS ET AL.

10.1029/2020WR028599

5 of 17



Water Resources Research

While Stahle et al. (2020) also produced seasonal precipitation reconstructions, we do not use those here 
because they used much larger search radii (500 and 1000 km), a shorter calibration period of 1928–1978, 
and a different definition of the cool season (December–April). The Stahle et al. reconstruction also did 
not include the out-of-sample reconstruction estimates made for each reconstruction nest. Our new re-
construction is meant to specifically optimize representation of Sierra Nevada precipitation, the period of 
overlap with observations to assess the reconstruction’s ability to capture observed spectral properties, and 
the depth of information available regarding reconstruction skill.

Finally, our consideration of all available RWI chronologies as potential predictors could unduly contami-
nate our cool-season SPI reconstruction with extra climate information from chronologies sensitive to other 
seasons or variables. We therefore produce an alternative reconstruction with a prescreened set of RWI 
chronologies that correlate significantly (p < 0.05; Pearson’s) with the nearest 1/2° grid cell’s cool-season 
SPI record and correlate more strongly with cool-season SPI than with warm-season SPI, where two defi-
nitions of warm season are considered: April–October of the growth year and April–August of the growth 
year plus the preceding September–October. This screening reduces the original network to 396 chronol-
ogies. We also consider a second alternative reconstruction based on only 33 RWI chronologies from blue 
oaks, as that California-endemic species has exceptional ring-width sensitivity to cool-season precipitation 
(Griffin & Anchukaitis, 2014; Meko et al., 2011; Stahle et al., 2013).

2.3.  Time Series Analysis

To assess the Sierra Nevada within the regional context of large-scale precipitation variability, we perform 
a PCA on the 1/4° multiproduct cool-season SPI dataset in the geographic domain of the North American 
west coast. We define the west coast as land area within 26–53°N, 105–129°W, and 750 km of the west coast. 
We use Pearson’s correlation to assess the relationships between the leading PCs of west-coast cool-season 
SPI, Sierra Nevada cool-season SPI, and global geopotential heights and SSTs.

To evaluate cyclicity in the observed and reconstructed time series of cool-season Sierra Nevada SPI, we esti-
mate spectra using the Blackman-Tukey smoothed-periodogram (Bloomfield, 2000; Chatfield, 1975). Wave-
let analysis is used to investigate how spectral features of these time series evolved over the reconstruction 
period (Grinsted et al., 2004; Torrence & Compo, 1998). To extract time series of cycles associated with the 
dominant periodicities in an SPI time series, we use the single-channel Singular-Spectrum Analysis (SSA), 
which decomposes a single time series into PCs with discrete dominant periodicities (Allen & Smith, 1996; 
Vautard & Ghil, 1989; Vautard et al., 1992). To identify common dominant periodicities across many grid-
ded SPI time series across the western United States, we use the Multitaper Singular Value Decomposition 
Method (MTM-SVD) (Ghil et al., 2002; Mann & Park, 1994, 1999).

3.  Results and Discussion
Figure 1a shows records of Sierra Nevada cool-season SPI calculated from NOAA Climgrid and the four 
alternative data products for comparison. These datasets agree well (R2 > 0.93) during the period of overlap. 
An exception is that the GPCC dataset does not indicate strong negative precipitation anomalies during 
2012–2015, a period well known for extreme drought (Swain, 2015; Williams et al., 2015). We interpret that 
GPCC Sierra Nevada precipitation totals are erroneously high in 2012–2015, supported by disagreement 
between the GPCC record and that calculated from raw station records from the GHCN (orange line in 
Figure 1a).

Figure 1b shows the spectra for the five Sierra Nevada SPI time series shown in Figure 1a. All five records 
agree on significant spectral peaks centered on approximately 2.2 and 13–15 years. In the primary SPI re-
cord (NOAA), peak spectral activity is at periodicities of 2.18 and 13.9 years. Based on a Monte Carlo sim-
ulation with 10,000 random white-noise time series, the probability of either cycle arising randomly with 
its respective amplitude and periodicity is extremely low (p = 0.0002 and p = 0.007, respectively). However, 
a random time series can generate a high-amplitude cycle at any periodicity. Among the 10,000 random 
time series, just 1.25% contain a higher-amplitude cycle than that observed at the 2.18-year periodicity but 
nearly half (47.1%) had a higher-amplitude cycle than that observed at the 13.9-year periodicity. Consistent 
with the findings of Johnstone (2011), the SPI spectral peak near 2.2 years represents a distinctly shorter 
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periodicity than that of the Quasi-Biennial Oscillation (QBO); mean equatorial cool-season 30 hPa zonal 
wind velocity had a periodicity of 2.35 years during 1949–2020 (Figure S1).

The interannual variability and spectral properties of Sierra Nevada cool-season SPI are representative of 
cool-season precipitation across much of the midlatitude United States west coast (Figure  2). Based on 
the PCA, Sierra Nevada SPI is distinct from the well-known dipole mode associated with ENSO variability 
(PC1; Figures 2a–2d) and is instead consistent with a more spatially ubiquitous mode (PC2) described in 
previous work (Dettinger et al., 1998; Stewart et al., 2005; Wise, 2010; Cook et al., 2018; Baek et al., In press). 
Figure 2g shows that PC2 (and therefore Sierra Nevada cool-season precipitation) is associated with low 
geopotential heights off the United States west coast, but the lack of strong correlation with SSTs highlights 
the difficulty in seasonal forecasting based on ocean teleconnections.

Applying the MTM-SVD to cool-season SPI across the entire western United States (33–48°N, 105–125°W), 
we find that the dominant spectral peaks shared across the region are once again centered on periodici-
ties of approximately 2.2 and 13–15 years (Figure S2). Figure 3 shows the contribution of these cycles to 
cool-season SPI across the western United States and in the Sierra Nevada specifically. The 2.2- and 13–15-
year cycles have similar geographic footprints, with arcs of maximum influence extending north from cen-
tral California through Oregon and Washington and east through northern Nevada, southern Idaho, north-
ern Utah, and western Colorado (Figure 3 maps).

Performing an SSA on the observed Sierra Nevada SPI record, the two leading components have periodici-
ties of 2.19 and 13.7 years, each accounting for 21–24% of the total variance of the 1902–2020 SPI time series 
(Figures 3a and 3b) and combining to account for approximately 40% of the total variance (Figure 3c time 
series). However, the contributions of 2.2- and 13–15-year cycles are not consistent throughout the observed 
period. These two SSA-derived components account for 46% of the observed Sierra Nevada SPI variability in 
1941–2020, but only 24% in 1902–1940. This can be seen in the reduced amplitude of the 2.2- and 13–15-year 
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Figure 2.  Dominant modes of cool-season (November–March) precipitation variability on the North American west coast. Top and bottom row panels 
represent the first (PC1) and second (PC2) modes of the Standardized Precipitation Index (SPI) in the North American west-coast region west of the red line 
in maps (a) and (e) based on a principal components analysis for water years 1902–2020. (a) Correlation between SPI and the PC1 time series (orange polygon: 
Sierra Nevada region; percentage values: variance of North American west-coast SPI contained in PC1). (b) PC1 time series (black) overlaid on Sierra Nevada 
SPI (SN SPI; red) (r value: correlation between PC1 and SN SPI; PC1 standardized to a 1921–2016 baseline). (c) Correlation between PC1 and cool-season mean 
Sea Surface Temperature (SST; background) and 500 hPa Geopotential Height (GPH; contours). Correlations in (c) were carried out on detrended time series 
over 1902–2020 and 1949–2020 for SST and GPH, respectively, and correlations corresponding to p > 0.1 are not shown. (d) Spectra of PC1 (black) and SN SPI 
(pink shading). (e)–(h) Same as (a)–(d) but for PC2.
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cycles in the time series plots of Figure 3, particularly between approximately 1910 and 1940. This reduction 
in decadal-scale variability is consistent with prior findings from the broader western United States (Ault 
& St. George, 2010; Johnstone, 2011). We observe the same result when we repeat the analyses with our 
GHCN-based SPI product (Figures 3 and S2).

What is the longer-term history of these observed spectral peaks in Sierra Nevada cool-season precipitation? 
Did the tendency for 2.2- and 13–15-year periodicities come and go with multidecadal persistence in prior 
centuries as they did during the observed period? Were other periodicities more dominant in prior centu-
ries? We can address these questions if tree-ring reconstructions are skillful and can faithfully capture the 
spectral characteristics of cool-season precipitation variability during the 20th-century period of overlap 
with observations.

Figure  4 suggests that tree-ring reconstructions do a reasonable job at capturing the spectral properties 
of cool-season precipitation in the Sierra Nevada. Our gridded reconstructions are particularly skillful in 
California (Figure 4a), owing largely to the exceptional precipitation sensitivity of blue oak and big-cone 
Douglas-fir, both endemic to California (Meko et  al.,  2011; Michaelsen et  al.,  1987; Stahle et  al.,  2013). 
For the Sierra Nevada, our out-of-sample reconstruction estimates of regional mean SPI correlate highly 
(VR2  =  0.74) with observations during the 1902–2000 period of overlap (Figure  4b). In addition to this 
remarkably high overall reconstruction skill, the Sierra Nevada reconstruction also captures multiple 
elements of the observed SPI spectra, including spectral peaks at periodicities of approximately 2.2 and 
13–15 years (Figure 4c). While these spectral peaks are not as strong in the reconstruction as in the obser-
vations, the reconstruction’s SSA-derived time series of the 2.2- and 13–15-year components still agree well 
with the observed 2.2- and 13–15-year time series components (VR2 = 0.57), especially in the second half 
of the 20th century when observed variance at these periodicities was relatively high (Figure 4d). Notably, 
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Figure 3.  Dominant periodicities in western United States cool-season (November–March) Standardized Precipitation Index (SPI) based on the Multitaper 
Singular Value Decomposition Method (MTM-SVD) applied across the domain shown in the maps. (a) Maps: R2 between the MTM-SVD-derived 2.2-year time 
series component and the original cool-season SPI record for (left) the NOAA Climgrid dataset during 1902–2020 and (right) the gridded GHCN dataset for 
1916–2020 (gray: inadequate station coverage). Time series plot: (right) Sierra Nevada cool-season SPI calculated from NOAA Climgrid (NOAA SN SPI) overlaid 
by the 2.2-year time series component calculated by applying Singular-Spectrum Analysis (SSA) to (turquoise) NOAA Climgrid and (gold) GHCN. R2 values 
indicate the fraction of Sierra Nevada cool-season SPI variance contained in the SSA-derived time series. (b) Same as (a) but for the 13–15-year component. (c) 
Same as (a) and (b) but for the sum of the 2.2- and 13–15-year components.
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the 2.2- and 13–15-year spectral peaks persist in alternate reconstructions in which the reconstruction is 
not forced to take on observed autoregressive properties and the 2.2- and 13–15-year cycles are subtracted 
away from observations using SSA. These results indicate that these reconstructed periodicities are due 
to actual periodicities in the tree-ring widths and not due to treatment of autoregressive properties in our 
reconstruction procedure.

One cause of the reconstruction’s weaker spectral power at periodicities of 2.2 and 13–15 years is that the 
variance of the reconstruction during 1902–2000 is diluted by an additional 5.2-year cycle not present in the 
instrumental observations (Figure 4c). This reconstructed spectral peak corresponds to a 5.2-year cycle in 
soil moisture (Figure S3), which in turn corresponds to a spectral peak in warm-season precipitation that 
is likely enhanced by temporal autocorrelation of soil-moisture anomalies. This periodicity appears to arise 
as the average of multiple spectral peaks from various parts of the year as opposed to a single portion of 
the warm season (Figures S3c and S3d). Warm-season contamination of the cool-season SPI reconstruc-
tion highlights an inherent limitation of using tree-ring records, which integrate climatic variability over 
multiple seasons and years, to reconstruct one variable during one season. Because the reconstruction does 
not capture the full amplitudes of the observed 2.2- and 13–15-year cycles in cool-season precipitation, the 
reconstruction is prone to missing cyclicity entirely during periods when the real-world cyclicity has a low 
amplitude. For example, when the observed cool-season precipitation cyclicity was suppressed prior to ap-
proximately 1940, the reconstructed cyclicity is nearly absent (Figure 4d).

Our additional experiments with more restricted tree-ring networks show that these limitations of the re-
construction are not due to our use of all available tree-ring chronologies as potential predictors in our 
reconstruction. The 5.2-year periodicity and the reduced spectral power in the 2.2- and 13–15-year bands 
are also apparent in our two alternate reconstructions based only on RWI chronologies most representative 
of cool-season precipitation and on the blue oak chronologies (Figure S4).

Importantly, Figure 4 only represents the reconstruction nest that uses all available tree-ring chronologies 
that cover CE 1800–2000. For the reconstruction to extend further back in time, we must consider ad-
ditional reconstruction nests developed from fewer tree-ring chronologies. This reduction in chronology 
availability leads to a general reduction in reconstruction skill of the Sierra Nevada SPI reconstruction, but 
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Figure 4.  Comparison of reconstructed to observed cool-season (November–March) Standardized Precipitation Index 
(SPI). (a) R2 between gridded SPI observations and reconstructions during the 1902–2000 period of overlap (left: fully 
Calibrated R2 (CR2) for the reconstruction calibrated on the full 1902–2000 period; right: cross-Validated R2 (VR2) of 
out-of-sample reconstruction estimates; gray grid cells: no reconstruction due to poor skill or lack of nearby tree-ring 
data). (b) Regionally averaged observed and reconstructed Sierra Nevada cool-season SPI during the period of overlap. 
(c) Spectra of the time series in (b). (d) Sum of the 2.2- and 13–15-year time series components of the SPI time series in 
(b) based on singular-spectrum analysis. In (b)–(d), black: primary reconstruction, gray: cross-validated reconstruction 
estimates. Reconstruction data are from the primary reconstruction based on all available tree-ring records covering 
1800–2000. In (c), circles indicate significant (90%) difference from white noise.
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it remains high (VR2 ≥ 0.55) back to 1400 (Figure 5a). All reconstruction 
nests agree on the general 1902–2000 spectral characteristics evident in 
the primary reconstruction nest, but there are nonetheless fluctuations in 
how well reconstructions capture the observed spectral peaks at 2.2 and 
13–15 years as well as the spectral peak at 5.2 years (Figure 5b). As the 
number of available tree-ring chronologies declines further back in time, 
there is no discernable trend in the ability of the reconstruction to cap-
ture the variance attributed to the 2.2-year periodicity. However, the nests 
used to reconstruct SPI prior to 1530 exhibit a markedly reduced ability to 
capture the amplitude of the observed 13–15-year cycle (Figure 5c). The 
reduced ability of very long reconstructions to capture the amplitude of 
the observed 13–15-year cycles, and the degraded reconstruction skill in 
general among these long reconstructions, are largely due to the absence 
of northern California blue oak chronologies prior to 1530.

Based on our results, we suggest caution in interpreting reconstructed 
spectral characteristics of Sierra Nevada cool-season precipitation. While 
the reconstruction should capture real-world spectral peaks when there 
is a high degree of amplitude at these periodicities, Figures 4 and 5 sug-
gest that the reconstruction’s ability to do so is likely to change as the 
network of available tree-ring chronologies changes and that the ampli-
tude of reconstructed cyclicity is muted relative to the real world. Recon-
structed spectra are also confounded by other climate and soil-moisture 
conditions besides cool-season precipitation.

Figure 6a shows the full reconstruction of Sierra Nevada cool-season SPI. 
While the purpose of the current study is to inspect spectral properties, 
we briefly point out that similar to previous findings from this region 
(Diaz & Wahl, 2015; Graumlich, 1993; Griffin & Anchukaitis, 2014; Wahl 
et al., 2017; Woodhouse et al., 2020), the recent period of instrumental 
observations does not appear to capture the full range of Sierra Nevada 
cool-season precipitation anomalies. In particular, the reconstruction in-
dicates a single-year negative SPI value in 1580 (−4.18 σ) that greatly ex-
ceeds the severity of the most negative SPI in the observed record (1977: 
−2.43 σ). Remarkably, 1580 and 1977 were each the second year in a pair 
of back-to-back extreme drought years (1579–1580 and 1976–1977), with 
1579 ranking second most negative in the reconstruction (−2.31 σ) and 
1976 ranking second most negative in the observations (−2.04 σ). In an 
analysis of the distribution of running-mean SPI values, in which a range 

of window lengths was considered, the observed SPI record does not fully represent the potential for excep-
tionally dry multiyear periods, but overrepresents the potential for wet multiyear periods (Figure S5).

Our analysis also suggests that the spectral properties of cool-season precipitation during the observed 
period were not representative of those of prior centuries. The spectral analysis in Figure 6b shows that 
the 600-year reconstruction as a whole does not have a significant spectral peak at the 2.2-year periodic-
ity over its complete length, but does contain several prominent spectral peaks at periodicities of 2.4–2.6, 
4.6–7.5, 12.8, and 21.3 years (Figure 6b). The wavelet analysis in Figure 6c indicates that none of these 
spectral peaks were stable features throughout the reconstruction. While this may be due to the limitation 
of the reconstruction discussed above, we know from instrumental observations that the early 1900s also 
exhibited far less spectral activity at the 2.2- and 13–15-year periodicities than in more recent decades. The 
reconstruction suggests that this early 1900s period was part of a rare period from approximately 1875 to 
1950 when there was little coherent cyclicity at any periodicity (Figure 6c). Notably, this period of reduced 
spectral power coincides with a prolonged absence of single-year wet-to-dry or dry-to-wet transitions in the 
California precipitation reconstruction evaluated by Wahl et al. (2020). The most consistent spectral feature 
of the reconstruction is a broad tendency for periodicities of 3.5–8.0 years (Figure 6c). However, we advise 
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Figure 5.  Reconstruction skill and spectra of the reconstruction nests 
used to reconstruct regionally averaged cool-season Sierra Nevada 
Standardized Precipitation Index (SPI) back to 1400. (a) R2 between the 
reconstruction and observations during the 1902–2000 period of overlap. 
CR2: R2 based on the reconstruction calibrated to the full 1902–2000 period. 
VR2: cross-validated R2 based on out-of-sample reconstruction estimates. 
Each segment represents CR2 and VR2 values for a reconstruction nest 
based on a unique set of tree-ring chronologies. (b) Spectra of observed 
(red) and reconstructed Sierra Nevada cool-season SPI during 1902–2000. 
Each pair of black and gray spectra represent a unique reconstruction 
nest. Black: calibrated on the full 1902–2000 period. Gray: out-of-sample 
reconstruction estimates. (c) Time series of each reconstruction nest’s 
relative variance values that correspond to spectral peaks at periodicities of 
2.2, 5.2, and 13–15 years from (b).
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against confident interpretation of this as a true spectral feature of cool-season precipitation given that this 
spectral band contains the reconstructed artificial 5.2-year cycle during the observed period. These results 
are consistent with those obtained from our alternate reconstruction based on the prescreened network of 
tree-ring chronologies that are particularly sensitive to cool-season precipitation (Figure S6).

For more direct assessment of the 20th-century spectral features in a 600-year context, Figure 7 evaluates 
the reconstruction’s spectral properties on a centennial scale. In Figure 7a, the spectra for each of the six 
centuries of the reconstruction share few commonalities, further supporting the conclusion that the strong 
2.2- and 13–15-year cycles in Sierra Nevada cool-season precipitation during the 20th century were unique 
and cannot be reliably used for forecasting. Once again, all results shown in Figure 7 are consistent with 
those obtained from the alternate reconstruction based on the prescreened network of tree-ring chronolo-
gies (Figure S7).

Figure 7b presents the same centennial spectral analysis as in Figure 7a, but as a Hovmöller diagram in 
which the spectral analysis is performed on the reconstruction along a 99-year moving window. Here it is 
further clarified that the 20th century was unique in terms of all three of its significant spectral peaks. Prior 
to 1857–1955, no reconstructed 99-year period exhibits significance in any of the 2.2-, 5.2-, or 13–15-year 
bands. However, Figure 7 highlights some interesting general tendencies throughout the reconstruction. 
While the 20th century was unique in terms of the 2.2-year cycle, spectral peaks coinciding broadly with 
2.1-year and/or 2.4–2.7-year periodicities are more consistent throughout the reconstruction. Particularly 
strong spectral peaks indicate a high degree of variance associated with a 2.4-year cycle from the late 1700s 

WILLIAMS ET AL.

10.1029/2020WR028599

11 of 17

Figure 6.  Reconstructed cool-season (November–March) Sierra Nevada Standardized Precipitation Index (SPI) 
and spectral features. (a) Time series of (black) the reconstruction for 1400–2000 and (red) the target observational 
SPI record for 1902–2020. Gray: 95% confidence intervals. R2: coefficient of determination between fully calibrated 
reconstruction and observations during 1902–2020. (b) Spectra of the reconstruction. Numbers above spectral peaks: 
period (years) associated with each peak. (c) Wavelet of reconstruction. Circles in (b) and bold black lines in (c) 
significant (90%) difference from white noise. In (b) and (c), the reconstruction was extended with observations for 
2001–2020.
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through mid-1800s and a 2.6-year cycle from the late 1500s to early 1700s. Similarly, while spectral power in 
the 13–15-year band is only evident in the observed period, there is a broad tendency for decadal variability 
in the 10–30-year timeframe throughout the reconstruction. It is not clear whether these tendencies for 
quasi-biennial and quasi-decadal variations were driven by consistent climatological mechanisms through-
out the reconstruction, nor the degree to which the reconstructed drift in periodicities within each spectral 
band may have been promoted by noise in the climate and/or ecological system. Regardless, the band-pass 
filtered time series shown in Figures 7c and 7d indicate that the amounts of variance concentrated in these 
broad 2.1–2.7- and 10–30-year spectral bands are highly inconsistent throughout the reconstruction. This 
suggests that even if the large-scale climatological mechanisms driving quasi-biennial and quasi-decadal 
periodicity have remained the same over the past six centuries, their amplitudes and/or the amplitudes of 
the Sierra Nevada precipitation responses to these mechanisms have been irregular.

Finally, Figures 7b and 7e allow us to inspect the high degree of reconstructed 3.5–8-year spectral activity in 
more detail. While each century exhibited significant spectral power somewhere in this broad subdecadal 
band, there was little consistency in the peak periodicity from century to century. The peak reconstruct-
ed spectral activity in this or any spectral band was from the late 1700s to late 1800s and corresponded 
to periodicities of approximately 5.7–7.4 years. The mid-1700s through late 1800s also coincided with the 
highest degree of variance attributed to a 2.4-year periodicity in the reconstruction. Prior to that, the recon-
struction indicates higher-frequency (3.5–5-year) variability. Given that the reconstructed 5.2-year cycle 
during the 20th century was unrelated to cool-season precipitation, extra caution is necessary when decid-
ing whether these reconstructed periods of high-amplitude activity in the 3.5–8-year window reflect true 
cool-season precipitation cyclicity. Further, the cooler temperatures of the Little Ice Age, particularly the 
1700s (Graumlich, 1993), may have promoted even more artificial midfrequency variability by enhancing 
the persistence of soil-moisture anomalies. On the other hand, lack of midfrequency variability in observed 
cool-season precipitation is no guarantee that reconstructions of preobservational mid-frequency variability 
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Figure 7.  Assessment of stability of Sierra Nevada cool-season Standardized Precipitation Index (SPI) spectra over 
the past 600 years (a) Spectra during each of the six centuries of the SPI reconstruction. (b) Ninety-nine-year moving-
window spectral analysis (y axis: center year of each 99-year period). In (b), observed SPI values for 2001–2020 are 
appended to the reconstruction. The three pairs of vertical dotted lines in (b) bound the significant 2.2-, 5.2-, and 
13–15-year periodicities indicated in the 1900s in (a). Circles in (a) and black contours in (b) indicate significant (90%) 
difference from white noise. (c)–(e) Band-pass filtered time series of the (black) reconstruction and (red) observations 
in the (c) high, (d) low, and (e) midfrequency spectral bands indicated in the top-left of each panel. R2 in (c)–(e): 
coefficient of determination between the fully-calibrated reconstruction and observations during 1902–2020.
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are artificial. For example, Wise (2010) and DeRose et al. (2013) show that the latitude of the middle-point 
of the western United States ENSO precipitation dipole appears to have varied over past centuries. An un-
stable ENSO teleconnection may be expected to promote temporal variability in the spectral characteristics 
of Sierra Nevada cool-season precipitation, particularly in the 3.5–8 year band. The prominence of midfre-
quency variability throughout the reconstruction, and its lack of prominence in observations, should be the 
focus of further research.

4.  Conclusions
Instrumental observations indicate significant cool-season precipitation cycles with periodicities of 2.2 and 
13–15 years in the Sierra Nevada and much of midlatitude western North America, which do not appear 
to be directly related to tropical SST teleconnections. These observed cycles were particularly strong from 
approximately 1940 to present. However, these cycles had substantially lower amplitudes in the early 1900s, 
suggesting that the strengths and periodicities of precipitation cycles may not be stable in time. Our goal 
was to determine whether tree-ring reconstructions can capture the observed cyclicity in Sierra Nevada 
cool-season precipitation, and if so, how cyclicity has varied over the past several centuries.

Our tree-ring reconstruction of Sierra Nevada cool-season precipitation is highly skillful and captures the 
observed 2.2- and 13–15-year cycles, though with somewhat muted amplitudes. The reconstruction also 
contains a 20th-century spectral peak at 5.2  years that was not observed, but instead resulted from hy-
drological conditions integrated throughout the year. The network of tree-ring chronologies used for the 
Sierra Nevada reconstruction changes back in time due to declining availability of chronologies, and this 
reduces skill, particularly prior to 1530s when blue oak chronologies in northern California are unavailable. 
This shift toward less precipitation-sensitive tree-ring records prior to the mid-1500s does not cause the 
reconstruction to lose its ability to capture high-frequency 2.2-year spectral power, but does reduce the re-
construction’s reliability to capture spectral power in the 13–15-year window. These results serve as caution 
against over-confidence in the reconstruction’s ability to capture the full spectral properties of cool-season 
precipitation. For example, even if a spectral feature such as a 2.2-year cycle was strong and stable over 
1400–2000 in real-world precipitation, our results suggest the tree-ring reconstruction would underrepre-
sent the cycle’s amplitude and stability.

Despite limitations inherent to our reconstruction’s ability to capture nuanced spectral features of season-
al precipitation, the near-absence of significant reconstructed 2.2- and 13–15-year cycles prior to the ob-
served period strongly suggests that these were not stable features of cool-season precipitation over the past 
600 years. This is consistent with previous tree-ring based findings that 10–20-year cyclicity in midlatitude 
west-coast winter precipitation was uniquely strong in the 20th century (St. George & Ault, 2011) and that 
a near-15-year cycle in 20th-century Sacramento and San Joaquin river flow was a transient phenomenon 
(Meko et al., 2014). Interestingly, our reconstruction indicates much more consistent spectral activity in the 
2.4–2.6-year band and other tendencies toward 2.1- and 10–30-year cycles. The highest-amplitude spectral 
activity in the reconstruction is in the 4.6–7.5-year timeframe, but this should be interpreted with skepticism 
due to the reconstruction’s artificial 5.2-year spectral peak in the 20th century. The strongest reconstructed 
cyclicity in the entire reconstruction occurs in the 4.6–7.5-year band during the Little Ice Age period.

Although the observed 2.2- and 13–15-year cycles were most likely not stable over the past several centuries, 
observations and our reconstruction indicate that precipitation cycles can emerge and persist for several 
decades at a time. Our results caution against extrapolating observed cycles into the future for water-man-
agement purposes, but the tendency for multidecade persistence of periodicity remains intriguing. More 
work is needed to understand the dynamical drivers of multidecade periods of phase-locked periodicity, 
which may aid future management decisions regarding whether an ongoing cycle is likely persist into the 
future. But it also must be kept in mind that anthropogenic forcing increasingly reduces the applicability of 
historical conditions as guides for future expectations. Future work should investigate the degree to which 
general circulation models simulate multidecadal persistence of interannual to decadal cycles such as those 
observed and reconstructed here, and use model experiments to diagnose the drivers of cyclicity. Results 
may expose teleconnections and/or external forcing mechanisms that promote Sierra Nevada precipitation 
cyclicity, or may reveal that multidecadal persistence of Sierra Nevada precipitation cycles such as those 
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observed and reconstructed should be expected to come and go from random atmospheric variability alone. 
Models may also be useful to guide expectations as to whether transient cycles in cool-season precipitation 
should be enhanced (in amplitude and/or persistence) or suppressed by anthropogenic climate forcing and/
or phases of natural decadal variability such as the Pacific Decadal Oscillation. Anthropogenic climate 
change incentivizes continued work to understand the drivers of Sierra Nevada cool-season precipitation 
cyclicity, as water management in California is likely to become increasingly difficult due to increasing 
evaporative demand, reduced capacity for mountain snowpack to regulate runoff, and increased precipita-
tion volatility (Barnett et al., 2005, 2008 ; Berg & Hall, 2015; Gershunov et al., 2019; Pendergrass et al., 2017; 
Pierce et al., 2018; Swain et al., 2018; Livneh & Badger, 2020; Williams et al., 2020)

Data Availability Statement
All climate data used are publicly available: NOAA Climgrid (http://dx.doi.org/10.7289/V5SX6B56), PRISM 
from Oregon State University (www.prism.oregonstate.edu), CRU 4.04 (https://crudata.uea.ac.uk/cru/data/
hrg/cru_ts_4.04), GPCC (https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_
v2018_doi_download.html), GHCN (https://www.ncdc.noaa.gov/ghcnd-data-access), ERA5 (https://cds.cli-
mate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means), NOAA Extended SSTs (https://
psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html), and NCEP/NCAR geopotential heights (https://psl.noaa.
gov/data/gridded/data.ncep.reanalysis.html), monthly stratospheric zonal winds for QBO analysis (https://
psl.noaa.gov/data/climateindices/list/), and Williams et al. (2020) reference evapotranspiration and soil mois-
ture (https://dx.doi.org/10.25921/2vbe-8092). Publicly available tree-ring data come from the International 
Tree-Ring Databank (https://www.ncdc.noaa.gov/data-access/paleoclimatology-data). The EPA ecoregion 
map data used to define the Sierra Nevada region was accessed from https://www.epa.gov/eco-research/level-
iii-and-iv-ecoregions-state. All observed and reconstructed precipitation grids and Sierra Nevada annual time 
series are available at https://www.ldeo.columbia.edu/∼williams/wrr2020data/.
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